

2. Konferenca Mladih Odseka F8

Homogenost sevalnega polja v okolici gorivnih elementov

Junoš Lukan

Reaktorski center Podgorica, 19. 2. 2015

Vsebina

Motivacija

Definicija in mere homogenosti

Testni primeri fluksa žarkov gama Simetrija Število elementov Velikost kanala

Izbor mer

Zaključek

Homogenost polja
— Motivacija

· Slikanje z magnetno resonanco (MRI)

Homogenost polja - Motivacija

- · Slikanje z magnetno resonanco (MRI)
- TEA laserji

Slika: Maggs, P., 2008, CO2 TEA Laser Electrical Circuit, http://commons.wikimedia.org/wiki/File:TEA-Laser-Circuit.jpg

Homogenost polja - Motivacija

- · Slikanje z magnetno resonanco (MRI)
- TEA laserji
- Dopiranje kristalov v raziskovalnih reaktorjih (Neutron Transmutation Doping of Silicon at Research Reactors, 2012)

Homogenost polja
— Motivacija

- · Slikanje z magnetno resonanco (MRI)
- TEA laserji
- Dopiranje kristalov v raziskovalnih reaktorjih (*Neutron Transmutation Doping of Silicon at Research Reactors*, 2012)
- · Enakomerno obsevanje vzorcev v polju gama za testiranje vzdržljivosti

Analitične definicije

· Naključno polje:
$$\xi(g) = \sum_{\lambda} \sum_{i,j=1}^{d_{\lambda}} z_{ji}^{(\lambda)} T_{ij}^{(\lambda)}(g)$$
, kjer so
 $z_{ji}^{(\lambda)} = d_{\lambda} \int_{G} \xi(g) \overline{T_{ij}^{(\lambda)}(g)} \, \mathrm{d}g$, je homogeno (Yaglom, 1961), če:

$$E z_{ji}^{(\lambda)} z_{ik}^{(\mu)} = \delta_{\lambda\mu} \delta_{ik} f_{jl}^{(\lambda)}$$

Analitične definicije

$$\begin{array}{l} \text{Naključno polje: } \xi(g) = \sum_{\lambda} \sum_{i,j=1}^{d_{\lambda}} z_{ji}^{(\lambda)} T_{ij}^{(\lambda)}(g) \text{, kjer so} \\ z_{ji}^{(\lambda)} = d_{\lambda} \int_{G} \xi(g) \overline{T_{ij}^{(\lambda)}(g)} \, \mathrm{d}g \text{, je homogeno (Yaglom, 1961), če:} \end{array}$$

$$E z_{ji}^{(\lambda)} z_{ik}^{(\mu)} = \delta_{\lambda\mu} \delta_{ik} f_{jl}^{(\lambda)}$$

· Razvoj $\phi({\bf r})$ v Taylorjevo vrsto okrog ${\bf r}=0$, primerjava velikosti prvih nekaj členov

Analitične definicije

$$\begin{array}{l} \text{Naključno polje: } \xi(g) = \sum_{\lambda} \sum_{i,j=1}^{d_{\lambda}} z_{ji}^{(\lambda)} T_{ij}^{(\lambda)}(g) \text{, kjer so} \\ z_{ji}^{(\lambda)} = d_{\lambda} \int_{G} \xi(g) \overline{T_{ij}^{(\lambda)}(g)} \, \mathrm{d}g \text{, je homogeno (Yaglom, 1961), če:} \end{array}$$

$$Ez^{(\lambda)}_{ji}z^{(\mu)}_{ik} = \delta_{\lambda\mu}\delta_{ik}f^{(\lambda)}_{jl}$$

- · Razvoj $\phi({\bf r})$ v Taylorjevo vrsto okrog ${\bf r}=0$, primerjava velikosti prvih nekaj členov
- · Delovna definicija: Čim bolj konstantno polje

1. Dvotočkovna mera:
$$\frac{\phi_{\max}}{\phi_{\min}} \in [1,\infty)$$

1. Dvotočkovna mera:
$$\frac{\phi_{\max}}{\phi_{\min}} \in [1,\infty)$$

2. Statistične mere:

$$\cdot \frac{\phi_{\max}}{\langle \phi \rangle} \in [1,\infty); \ \frac{\phi_{\max} - \phi_{\min}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\min}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\min}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\min}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\min}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\min}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\min}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\min}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\min}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\min}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\min}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\max}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\max}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\max}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\max}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\max}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\max}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\max}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\max}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\max}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\max}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\max}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Res$$

1. Dvotočkovna mera:
$$\frac{\phi_{\max}}{\phi_{\min}} \in [1,\infty)$$

2. Statistične mere:

$$\cdot \frac{\phi_{\max}}{\langle \phi \rangle} \in [1,\infty); \ \frac{\phi_{\max} - \phi_{\min}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\min}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research}$$

$$\cdot \ \left< \phi^2 \right> \in [0,\infty)$$

1. Dvotočkovna mera:
$$\frac{\phi_{\max}}{\phi_{\min}} \in [1,\infty)$$

2. Statistične mere:

$$\cdot \frac{\phi_{\max}}{\langle \phi \rangle} \in [1,\infty); \ \frac{\phi_{\max} - \phi_{\min}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\min}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\min}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\min}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\min}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\min}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\min}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\min}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\min}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\min}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\min}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\max}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\max}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\max}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\max}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\max}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\max}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\max}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\max}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\max}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\max}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\max}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Res$$

$$\cdot \ \left< \phi^2 \right> \in [0,\infty)$$

$$\cdot \ \langle |\nabla \phi| \rangle \in [0,\infty)$$

1. Dvotočkovna mera:
$$\frac{\phi_{\max}}{\phi_{\min}} \in [1,\infty)$$

2. Statistične mere:

$$\cdot \frac{\phi_{\max}}{\langle \phi \rangle} \in [1,\infty); \ \frac{\phi_{\max} - \phi_{\min}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\min}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\min}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\min}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\min}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\min}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\min}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\min}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\min}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\min}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\min}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\max}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\max}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\max}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\max}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\max}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\max}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\max}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\max}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\max}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\max}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Research} \\ \frac{\phi_{\max} - \phi_{\max}}{\langle \phi \rangle} \in [0,\infty) \ \text{(Neutron Transmutation Doping of Silicon at Res$$

$$\cdot \ \left< \phi^2 \right> \in [0,\infty)$$

 $\cdot \ \langle |\nabla \phi| \rangle \in [0,\infty)$

$$\cdot \left< \left| \nabla \phi \right|^2 \right> \in [0,\infty)$$

- 1. Dvotočkovna mera
- 2. Statistične mere
- 3. Razdalja med matriko $\phi({\bf r}_i)=\phi(x_i,y_j,z_k)=\left[\Phi\right]_{ijk}$ in konstantno matriko $\left[E\right]_{ijk}\equiv 1, \forall i,j,k$

- 1. Dvotočkovna mera
- 2. Statistične mere
- 3. Razdalja med matriko $\phi(\mathbf{r}_i) = \phi(x_i, y_j, z_k) = [\Phi]_{ijk}$ in konstantno matriko $[E]_{ijk} \equiv 1, \forall i, j, k$

Frobeniusova norma: $\|A\|_{\mathrm{F}} \equiv \sqrt{\mathrm{tr}(A^*A)}$

- 1. Dvotočkovna mera
- 2. Statistične mere
- 3. Razdalja med matriko $\phi(\mathbf{r}_i) = \phi(x_i, y_j, z_k) = [\Phi]_{ijk}$ in konstantno matriko $[E]_{ijk} \equiv 1, \forall i, j, k$ Frobeniusova norma: $||A||_{\mathbf{F}} \equiv \sqrt{\operatorname{tr}(A^*A)}$

 $\|\mathbf{A}\|_{\mathbf{F}} = \sqrt{\mathbf{U}} \mathbf{V}$

4. Porazdelitev največjih razlik:

- 1. Dvotočkovna mera
- 2. Statistične mere
- 3. Razdalja med matriko $\phi({\bf r}_i)=\phi(x_i,y_j,z_k)=\left[\Phi\right]_{ijk}$ in konstantno matriko $\left[E\right]_{ijk}\equiv 1, \forall i,j,k$

Frobeniusova norma: $\|A\|_{\mathbf{F}} \equiv \sqrt{\operatorname{tr}(A^*A)}$

- 4. Porazdelitev največjih razlik:
 - + $v_1 = (\phi_0, \phi_1, \dots, \phi_n)$, kjer je $\phi_0 < \phi_1 < \ldots < \phi_n$

- 1. Dvotočkovna mera
- 2. Statistične mere
- 3. Razdalja med matriko $\phi({\bf r}_i)=\phi(x_i,y_j,z_k)=\left[\Phi\right]_{ijk}$ in konstantno matriko $\left[E\right]_{ijk}\equiv 1, \forall i,j,k$

Frobeniusova norma: $\left\|A\right\|_{\mathrm{F}} \equiv \sqrt{\mathrm{tr}(A^*A)}$

- 4. Porazdelitev največjih razlik:
 - $\cdot ~v_1=(\phi_0,\phi_1,\ldots,\phi_n)$, kjer je $\phi_0<\phi_1<\ldots<\phi_n$ $\cdot ~v_2=(\phi_n,\ldots,\phi_1,\phi_0)$

- 1. Dvotočkovna mera
- 2. Statistične mere
- 3. Razdalja med matriko $\phi({\bf r}_i)=\phi(x_i,y_j,z_k)=\left[\Phi\right]_{ijk}$ in konstantno matriko $\left[E\right]_{ijk}\equiv 1, \forall i,j,k$

Frobeniusova norma: $\|A\|_{\mathbf{F}} \equiv \sqrt{\operatorname{tr}(A^*A)}$

- 4. Porazdelitev največjih razlik:
 - $\cdot \ v_1 = (\phi_0, \phi_1, \dots, \phi_n)$, kjer je $\phi_0 < \phi_1 < \ldots < \phi_n$

$$\cdot \ v_2 = (\phi_{\mathrm{n}}, \ldots, \phi_1, \phi_0)$$

 $\cdot~$ Histogram porazdelitve $(v_2-v_1)/\left< v_1 \right>$

- 1. Dvotočkovna mera
- 2. Statistične mere
- 3. Razdalja med matriko $\phi({\bf r}_i)=\phi(x_i,y_j,z_k)=\left[\Phi\right]_{ijk}$ in konstantno matriko $\left[E\right]_{ijk}\equiv 1, \forall i,j,k$

Frobeniusova norma: $\|A\|_{\mathbf{F}} \equiv \sqrt{\operatorname{tr}(A^*A)}$

- 4. Porazdelitev največjih razlik:
 - $\cdot \ v_1 = (\phi_0, \phi_1, \dots, \phi_n)$, kjer je $\phi_0 < \phi_1 < \ldots < \phi_n$

$$\cdot \ v_2 = (\phi_{\mathrm{n}}, \ldots, \phi_1, \phi_0)$$

- $\cdot~$ Histogram porazdelitve $\left(v_{2}-v_{1}\right)/\left\langle v_{1}\right\rangle$
- · Percentili: P_{75} , P_{95} , $P_{97.5}$

0 Relativne razlike max-min Reaktor9k4 center Pod9o6ica 19. 2. 2015

Lestni primeri fluksa žarkov gama

L_ Simetrija

Nesimetrična razporeditev

Lestni primeri fluksa žarkov gama

L_ Simetrija

Nesimetrična razporeditev

Testni primeri fluksa žarkov gama

└─ Simetrija

Nesimetrična razporeditev

Testni primeri fluksa žarkov gama

L_ Simetrija

Nesimetrična razporeditev

Reaktorski center Podgorica 19. 2. 2015

– Testni primeri fluksa žarkov gama

└─ Simetrija

Nesimetrična razporeditev - fluks žarkov gama

Testni primeri fluksa žarkov gama

└─ Simetrija

Nesimetrična razporeditev - nehomogenost

Reaktorski center Podgorica 19. 2. 2015 - Testni primeri fluksa žarkov gama

Število elementov

Število gorivnih elementov

Testni primeri fluksa žarkov gama

└─ Število elementov

Število gorivnih elementov

- Testni primeri fluksa žarkov gama

Število elementov

Število gorivnih elementov – nehomogenost

- Testni primeri fluksa žarkov gama

Število elementov

Število gorivnih elementov – nehomogenost

Lestni primeri fluksa žarkov gama

Velikost kanala

Velikost obsevalnega kanala

Slika: r = 10 cm

Slika: $r = 2.5 \,\mathrm{cm}$

Slika: r = 20 cm

– Testni primeri fluksa žarkov gama

└─ Velikost kanala

Velikost obsevalnega kanala – nehomogenost

Reaktorski center Podgorica 19. 2. 2015

– Testni primeri fluksa žarkov gama

└─ Velikost kanala

Velikost obsevalnega kanala – nehomogenost

- Testni primeri fluksa žarkov gama

└─ Velikost kanala

Velikost obsevalnega kanala – gradient

Slika: r = 2.5 cm

Slika: r = 5 cm

Slika: r = 10 cm

Homogenost polja L Izbor mer

Najboljše mere homogenosti

Analiza glavnih komponent (angl. principal component analysis, PCA): prva komponenta pojasni 76 % variance

Najboljše mere homogenosti

Analiza glavnih komponent (angl. principal component analysis, PCA): prva komponenta pojasni 76 % variance

Mera	Nasičenost
max/median	0.38
max/min	0.38
varianca	0.35
median(grad)	0.18
var(grad)	0.24
Frobenius	0.38
P_{75}	0.31
P_{95}	0.36
$P_{97.5}$	0.37

Homogenost polja Lizhor mer

Najboljše mere homogenosti

Analiza glavnih komponent (angl. principal component analysis, PCA): prva komponenta pojasni 76 % variance

Mera	Nasičenost
max/median	0.38
max/min	0.38
varianca	0.35
median(grad)	0.18
var(grad)	0.24
Frobenius	0.38
P_{75}	0.31
P_{95}	0.36
P _{97.5}	0.37

Multipla regresija za napoved vsote mer homogenosti

Homogenost polja L Zaključek

Zaključek

· Več možnosti za ovrednotenje homogenosti polja

Homogenost polja Zaključek

Zaključek

- · Več možnosti za ovrednotenje homogenosti polja
- · Gradient občutljiv na statistične napake

Homogenost polja - Zaključek

Zaključek

- · Več možnosti za ovrednotenje homogenosti polja
- · Gradient občutljiv na statistične napake
- · Vsota več mer

Homogenost polja - Zaključek

Zaključek

- · Več možnosti za ovrednotenje homogenosti polja
- · Gradient občutljiv na statistične napake
- Vsota več mer
- · Linearnost mere?

Homogenost polja Zaključek

Hvala za pozornost!

Homogenost polja
Zaključek

Literatura

- Ernst, G. J. (1984). Uniform-field electrodes with minimum width. Optics Communications, 49(4), 275–277. Pridobljeno http://doc.utwente.nl/69355/
 - Merritt, R., Purcell, C. & Stroink, G. (1983). Uniform magnetic field produced by three, four, and five square coils. *Review of Scientific Instruments*, 54(7), 879–882. doi:10.1063/1.1137480
 - Neutron transmutation doping of silicon at research reactors. (2012). Dunaj: International atomic energy agency. Pridobljeno 17. februarja 2015, http://wwwpub.iaea.org/books/IAEABooks/8739/Neutron-Transmutation-Doping-of-Silicon-at-Research-Reactors-at-Research-Reactors
- Yaglom, A. M. (1961). Second-order homogeneous random fields. V Proceedings of the fourth berkeley symposium on mathematical statistics and probability, volume 2: Contributions to probability theory (str. 593–622). The Regents of the University of California Berkeley. 2. Konference SFOSM Reaktorski center Podeorica

19 2 2015